Tacolneston \& Morley CE Primary Academies Federation

As each has received a gift, use it to serve one another, as good stewards of God's varied grace
1 Peter 4:10
Work together, learn together, grow together...

Calculation Policy - KS1

The following pages show the Power Maths progression in calculation that we have adopted (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

	Concrete	Pictorial	Abstract
Year 1 Addition Counting and adding more	Children add one more person or object to a group to find one more.	Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Use a number line to understand how to link counting on with finding one more. One more than 6 is 7 . 7 is one more than 6 . Learn to link counting on with adding more than one. $5+3=8$
Understanding part-part-whole relationship	Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6 .	Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5 . The whole is 6 .	Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$
Knowing and finding number bonds within 10	Break apart a group and put back together to find and form number bonds.	Use five and ten frames to represent key number bonds.	Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero.

Understanding
teen numbers
as a complete
m and some
more

Adding the 1s	Children use bead strings to recognise how to add the 1 s to find the total efficiently. -000000000000-000- $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Children represent calculations using ten frames to add a teen and 1 s . $\begin{aligned} & 2+3=5 \\ & 12+3=15 \\ & \hline \end{aligned}$	Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently. $\begin{aligned} & 3+5=8 \\ & \text { So } 13+5=18 \end{aligned}$
Bridging the 10 using number bonds	Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10 . So, 7 add 5 is 10 and 2 more.	Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Use a part-whole model and a number line to support the calculation.
Year 1 Subtraction Counting back and taking away	Children arrange objects and remove to find how many are left. 1 less than 6 is 5 . 6 subtract 1 is 5 .	Children draw and cross out or use counters to represent objects from a problem.	Children count back to take away and use a number line or number track to support the method. $9-3=6$

Finding a missing part, given a whole and a part	Children separate a whole into parts and understand how one part can be found by subtraction. $8-5=?$	Children represent a whole and a part and understand how to find the missing part by subtraction. $5-4=\square$	Children use a part-whole model to support the subtraction to find a missing part. $7-3=?$ Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model.
Finding the difference	Arrange two groups so that the difference between the groups can be worked out. 8 is 2 more than 6 . 6 is 2 less than 8. The difference between 8 and 6 is 2 .	Represent objects using sketches or counters to support finding the difference. $5-4=1$ The difference between 5 and 4 is 1 .	Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4 .

Subtraction within 20	Understand when and how to subtract 1s efficiently. Use a bead string to subtract 1s efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Understand when and how to subtract 1s efficiently.	Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$
Subtracting 10s and 1s	For example: 18-12 Subtract 12 by first subtracting the 10 , then the remaining 2. First subtract the 10, then take away 2.	For example: 18-12 Use ten frames to represent the efficient method of subtracting 12. First subtract the 10 , then subtract 2.	Use a part-whole model to support the calculation. 19-14 $19-10=9$ $9-4=5$ So, $19-14=5$
Subtraction bridging 10 using number bonds	For example: 12-7 Arrange objects into a 10 and some 1 s , then decide on how to split the 7 into parts. 7 is 2 and 5 , so I take away the 2 and then the 5 .	Represent the use of bonds using ten frames. For 13-5, I take away 3 to make 10, then take away 2 to make 8.	Use a number line and a part-whole model to support the method. $13-5$
Year 1 Multiplication Recognising and making equal groups	Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal.	Children draw and represent equal and unequal groups.	Three equal groups of 4 . Four equal groups of 3 .

		${ }^{\text {в }} \triangle \triangle \Delta \Delta \Delta \Delta$	
Finding the total of equal groups by counting in 2 s , 5s and 10s	There are 5 pens in each pack ... $5 \ldots 10 \ldots 15 \ldots 20 \ldots 25 \ldots 30 \ldots 35 \ldots 40 \ldots$	100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
Year 1 Division Grouping	Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Children may relate this to counting back in steps of 2,5 or 10.
Sharing	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts. This may be related to fractions.	10 shared into 2 equal groups gives 5 in each group.

Year 2

	Concrete	Pictorial	Abstract
Year 2 Addition Understanding 10s and 1s	Group objects into 10s and 1s． Bundle straws to understand unitising of 10s．	Understand 10s and 1s equipment，and link with visual representations on ten frames．	Represent numbers on a place value grid， using equipment or numerals．
Adding 10s	Use known bonds and unitising to add 10s． （III）III） I know that $4+3=7$ ． So， 1 know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10 s． I know that $4+3=7$ ． So，I know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． $\begin{aligned} & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$ $4+3=$ \square
Adding a 1－digit number to a 2－digit number not bridging a 10	Add the 1 s to find the total．Use known bonds within 10. 41 is 4 tens and 1 one． 41 add 6 ones is 4 tens and 7 ones． This can also be done in a place value grid．	Add the 1 s ． 34 is 3 tens and 4 ones． 4 ones and 5 ones are 9 ones． The total is 3 tens and 9 ones．	Add the 1s． Understand the link between counting on and using known number facts．Children should be encouraged to use known number bonds to improve efficiency and accuracy．

			This can be represented horizontally or vertically. $34+5=39$
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds. $+ \text { manmo }$ There are 4 tens and 5 ones. I need to add 7 . I will use 5 to complete a 10, then add 2 more.	Complete a 10 using number bonds.	Complete a 10 using number bonds. $\begin{aligned} & 7=5+2 \\ & 45+5+2=52 \end{aligned}$
Adding a 1-digit number to a 2-digit number using exchange	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.
Adding a multiple of 10	Add the 10s and then recombine.	Add the 10s and then recombine.	Add the 10s and then recombine.

to a 2-digit number	27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones. So, $27+50$ is 7 tens and 7 ones.	66 is 6 tens and 6 ones. $66+10=76$ A 100 square can support this understanding.	$\begin{aligned} & 37+20=? \\ & 30+20=50 \\ & 50+7=57 \\ & 37+20=57 \end{aligned}$
Adding a multiple of 10 to a 2-digit number using columns	Add the 10s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10s represented vertically. Children must understand how the method relates to unitising of 10 s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$

Adding two 2-digit numbers	Add the 10 s and 1 s separately. $\theta \theta \theta \theta \theta$ $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the 10 s and 1 s separately. Use a part-whole model to support. $11=10+1$ $32+10=42$ $42+1=43$ $32+11=43$	Add the 10s and the 1s separately, bridging 10s where required. A number line can support the calculations. $17+25$
Adding two 2-digit numbers using a place value grid	Add the 1 s . Then add the 10 s.		Add the 1 s . Then add the 10 s. $\begin{array}{r\|l} \mathrm{T} & 0 \\ \hline 3 & 2 \\ +1 & 4 \\ \hline 4 & 6 \\ \hline \end{array}$
Adding two 2-digit numbers with exchange	Add the 1s. Exchange 10 ones for a ten. Then add the 10s.		Add the 1s. Exchange 10 ones for a ten. Then add the 10s.

	T 0 100 0 100 100 $\neq \neq 0$		$\begin{array}{rl} \mathrm{T} & 0 \\ \hline 3 & 9 \\ -\quad 3 \\ \hline & \\ \cline { 1 - 2 } 3 & 6 \\ & \\ 9-3-3=6 \\ 39-3=36 \end{array}$
Subtracting a single－digit number bridging 10	Bridge 10 by using known bonds． $35-6$ I took away 5 counters，then 1 more．	Bridge 10 by using known bonds． 35－6 First，I will subtract 5，then 1.	Bridge 10 by using known bonds． $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtracting a single－digit number using exchange	Exchange 1 ten for 10 ones．This may be done in or out of a place value grid．	Exchange 1 ten for 10 ones．	Exchange 1 ten for 10 ones． $25-7=18$
Subtracting a 2－digit number	Subtract by taking away．	Subtract the 10 s and the 1 s ． This can be represented on a 100 square．	Subtract the 10 s and the 1 s ． This can be represented on a number line．

	0000000000 0000000000 0000000000 0000000000 $\varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ \varnothing 61-18 I took away 1 ten and 8 ones.		$\begin{aligned} & 64-41=? \\ & 64-1=63 \\ & 63-40=23 \\ & 64-41=23 \end{aligned}$ $\begin{aligned} & 46-20=26 \\ & 26-5=21 \\ & 46-25=21 \end{aligned}$
Subtracting a 2-digit number using place value and columns	Subtract the 1 s . Then subtract the 10s. This may be done in or out of a place value grid. $38-16=22$	Subtract the 1 s . Then subtract the 10 s .	Using column subtraction, subtract the 1 s . Then subtract the 10 s . $\begin{array}{r} \mathrm{T} O \\ \hline 45 \\ -10 \\ \hline \end{array}$ $-\begin{array}{l\|l} \mathrm{T} & 0 \\ \hline 4 & 5 \\ 1 & 2 \\ \hline 3 & 3 \\ \hline \end{array}$
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s .	Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s.

	1RMTMARMI 4 groups of 5	4 groups of $5 \ldots 5$ groups of 5	$5 \times 5=25$
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
$\begin{aligned} & \text { Learning } \times 2 \text {, } \\ & \times 5 \text { and } \times 10 \\ & \text { table facts } \end{aligned}$	Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts. 0000000000 ○○○○○○○○○○ 0000000000	Understand how the times-tables increase and contain patterns.

	$\begin{aligned} & \begin{array}{l} 3 \text { groups of } 10 \ldots 10,20,30 \\ 3 \times 10=30 \end{array} \end{aligned}$	$\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	$\begin{aligned} & 5 \times 10=50 \\ & 6 \times 10=60 \end{aligned}$
Year 2 Division	Start with a whole and share into equal parts, one at a time.	Represent the objects shared into equal parts using a bar model.	Use a bar model to support understanding of the division.$\qquad$$\qquad$ 18
Sharing equally	000000000000		
	12 shared equally between 2 . They get 6 each.	20 shared into 5 equal parts. There are 4 in each part.	$18 \div 2=9$

Grouping equally	Understand how to make equal groups from a whole. 0.02800 \square \square \square \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $12 \div 3=4$ 00000000000 $12 \div 4=3$ $12 \div 6=2$ \square $12 \div 2=6$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3. $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{array}{ll} 1 \times 10=10 & \\ 2 \times 10=20 & \text { I used the } 10 \\ 3 \times 10=30 & \text { times-table } \\ 4 \times 10=40 & \text { to help me. } \\ 5 \times 10=50 & 3 \times 10=30 \\ 6 \times 10=60 & \\ 7 \times 10=70 & \\ 8 \times 10=80 & \end{array}$ I know that 3 groups of 10 makes 30 , so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

